技術文章
Technical articles
熱門搜索:
P760/01_2760nm單模垂直腔面發射激光器
VCSEL-20-M激光控制驅動器
ZNSP25.4-1IR拋光硫化鋅(ZnS)多光譜(透明)窗片 0.37-13.5um 25.4X1.0mm(晶體/棱鏡
HB-C0BFAS0832x4 QPSK C波段相干混頻器(信號解調/鎖相放大器等)
Frequad-W-CW DUV 單頻連續激光器 213nm 10mW Frequad-W
ER40-6/125截止波長1300nm 高摻雜EDF摻鉺光纖
GD5210Y-2-2-TO46905nm 硅雪崩光電二極管 400-1100nm
SNA-4-FC-UPC日本精工法蘭FC/UPC(連接器/光纖束/光纜)
WISTSense Point 緊湊型高精度光纖傳感器解調儀(信號解調/鎖相放大器等)
CO2激光光譜分析儀
1030nm超短脈沖種子激光器PS-PSL-1030
FLEX-BF裸光纖研磨機
NANOFIBER-400-9-SA干涉型單模微納光纖傳感器 1270-2000nm
高能激光光譜光束組合的光柵 (色散勻化片)
350-2000nm 1倍紅外觀察鏡
S+C+L波段 160nm可調諧帶通濾波器
一、背景介紹2023年,諾貝爾物理學獎表彰了極紫外高次諧波產生的實驗技術,實現利用阿秒(1018分之一秒)量級時間寬度的極紫外激光脈沖研究各類物質中的電子運動,具有劃時代的科學意義。除了前沿科學應用,高次諧波作為一種時空相干、定向性好、發射亮度高、寬光譜范圍便于調諧的桌面型極紫外光源,相比等離子體光源和同步輻射光源具有明顯的成本優勢。因此,高次諧波光源有望在材料譜學分析、生物細胞和化學分子成像、半導體芯片量測檢測等領域取得廣泛應用。極紫外高次諧波光源的工業應用需要在單位時間內...
封面展示了具有多環形腔結構的大孔徑垂直腔面發射激光器(VCSEL)。通過將注入電流的區域分割成多個區域,可實現載流子分布的均勻化,進而有效抑制空間燒孔效應。該器件的近場分布均勻且明亮,遠場呈高斯分布,滿足了光通信、3D傳感、激光雷達等領域對高功率高光束質量半導體激光源的需求,進一步拓展了VCSEL在智能設備領域中的應用范圍。此外,多環形腔結構的設計無需引入微透鏡、表面光柵等外部結構,簡化了制備過程,為實現高光束質量高功率的VCSEL提供了新的技術路徑。一研究背景垂直腔面發射激...
受凝聚態拓撲啟發,光子拓撲絕緣體憑借其獨特的光學特性(如具有單向傳輸的手性邊界態)和豐富新奇的物理現象受到廣泛關注。超快激光直寫技術具有高精度的快速三維微納加工能力,可以在玻璃內部形成波導結構,是研究和實現光子拓撲絕緣體的重要手段,近年來實現了高階拓撲絕緣體、弗洛凱(Floquet)拓撲絕緣體、非厄米拓撲、非線性拓撲、拓撲泵浦、量子拓撲保護等新型拓撲模型和應用,極大地促進了拓撲光子學的研究進展,并為片上集成光子芯片帶來了新的機遇。之江實驗室譚德志研究員團隊綜述了最新拓撲光子學...
研究背景飛秒光頻梳在時域上由相同間距的超短脈沖串構成,頻域上由一系列離散、等間距且具有穩定相位關系的頻率分量組成,可以實現原子鐘精度的絕對頻率測量,是天然的時頻基準。飛秒光頻梳在精密測量、光譜學、冷原子等相關領域中有著重要的應用意義。目前,在中紅外波段,飛秒光頻梳為精密光譜學帶來一套新的工具,可用于二氧化碳、氨氣等特殊氣體檢測。此外,對分子結構和動力學的透徹理解通常涉及到寬頻率范圍內的詳細光譜分析。借助中紅外光頻梳,也可以在大動態范圍內精確研究分子樣品的組成變化。創新工作天津...
一、研究背景超短脈沖的出現,為人們以高時間分辨研究微觀超快動力學過程提供了可能,推動了人們對光與物質相互作用的理解。微觀范疇內,分子轉動過程時間尺度在皮秒量級,分子振動過程時間尺度在飛秒量級。而原子、分子、固體中電子運動時間尺度為阿秒量級,需要阿秒寬度的超短脈沖對其進行測量和研究。2001年,P.Agostini小組產生了脈沖寬度250as的13~19階高次諧波的阿秒脈沖串。同年,F.Krausz小組得到了脈寬650as的單個阿秒脈沖,標志著超快研究進入阿秒領域。其后20多年...
一、背景介紹光學技術具有非電離輻射、高分辨率、高對比度和對生物組織異變高度靈敏等特性,在生物醫學中扮演著越來越重要的角色,非常適用于生物組織的研究,包括成像、傳感、治療、刺激以及控制等等。然而由于生物組中光學折射率分布不均,光在生物組織中的傳播會受到很強的散射影響,導致了純光學技術的穿透深度和空間分辨率“魚和熊掌不可兼得”;高分辨率光學成像應用僅限于樣品淺表層,當成像深度增加時分辨率急劇下降。如何實現光在深層生物組織里的高分辨率成像或應用,是人們期盼已久的目標。香港理工大學賴...
一、研究背景隨著半導體工業的發展,光刻分辨率限制了極大規模集成電路制造集成度的進一步提升。在采用193nm光刻技術實現32nm甚至22nm節點后,光刻技術的發展遇到了瓶頸。為了進一步減小芯片的特征尺寸,采用更短波長的極紫外(EUV)光刻技術應運而生。EUV光刻目前采用13.5nm(2%帶寬)波長極紫外光作為曝光光源,這是綜合考慮靶材利用率、光譜純度、極紫外轉化效率等因素最終選定的波長。其中,錫已經成為EUV光源最主要的靶材。激光等離子體(LPP)和激光誘導放電等離子體(LDP...
一、背景介紹光量子精密測量作為當代量子力學的重要應用領域之一,一直以來備受關注。量子精密測量旨在利用量子資源提高物理系統中未知參數的測量精度,為基礎科學研究和實際工程應用帶來重要突破。光子系統作為量子信息處理的理想載體,具有相干時間長、不易受到環境干擾等優勢,因此在光量子精密測量中扮演著重要角色。近年來,光量子精密測量領域取得了令人矚目的進展,為光子系統的高精度測量和傳感應用提供了新的可能性。該綜述重點介紹光量子精密測量的關鍵技術進展,并展望未來的發展方向。二、量子精密測量的...